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Solving Bertolami’s Equations for Brans—-Dicke
Cosmological Models
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Solutions are developed for Berman and Som’s formulation of Bertolami’s equa-
tions for a Brans-Dicke cosmology with time-dependent cosmological term. Phys-
ical constraints are applied to these solutions to deduce conditions necessary for
constructing plausible cosmological models in this theory.

An interesting set of equations was formulated by Bertolami (1986) for
a Brans-Dicke cosmology with a Robertson-Walker metric, a perfect-fluid
source, and a time-dependent cosmological term. Berman and Som (1990)
subsequently obtained conditions for solving these equations for the general
equation of state

p=ap 0]
where a is a constant. Bertolami had solved his equations for the particular
cases 2 =0 and a=1/3 (i.e., p=0, p= p/3), and had obtained, among other
results, that

A=Et? )
where ¢ is cosmic time and E is a constant. Relation (2) was adopted by
Berman and Som, who also employed the expression

R(#)=(mD)'"™ (€))

for the scale factor R(f), where m and D are nonzero constants and m is
related to the (constant) deceleration parameter g by

m=q+1 “4)
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Inserting (1) and (3) into the appropriate equation of Bertolami, they
obtained

p=Cr30ram &)
for the density. Selecting
¢=st" (6)
for the Brans-Dicke scalar field (C, S, and 4 being constants), they set
A=2-3(1+a)/m )

in order to obtain, from the remaining equations of Bertolami, three relations
for determining all of the above constants, as well as the Brans-Dicke con-
stant w, in terms of @ and m. We write these relations as

2-2/m + 2
1+ X0 8”0(4 2w)m 2 WA ot Em? 8)
D¥m 38 \3+2w 6
+
A(A+3—1)+ 2£ (1+3) 8 A+ (1 _34) )
m 3+2w\ 4/ S (3+2w)
4+
8”‘7( 2”)(3-A>+wA2(_3--1)+ﬁ(2-3)=E(3—2) (10)
S \3+2w 2m m m m

Our aim is to solve the above system of equations for the three cases
k=0, £ 1, in order to obtain w in terms of @ and m; the constants 4, E, and
82 C/S then follow from w and equations (8)-(10).

For k=0, the time-dependent term in (8) vanishes, and the relations
(8)-(10) give

w=P1(m, a)/P2(m9 (l) (11)

where

Pi(m, a)= i a,(m)a’ (12)

i=0
with
ao=117—384m+375m* — 116m* - 4m*
=216 —390m -+ 78m’ + 84m’*
a=288 — 144m— 117m? (13)
a;=432—162m
a,=243
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and where

Py(m, @)= i b:(m)a’ (14)

i=0
with
bo=— 54+ 243m — 306m* + 148m’ — 24m*
by =—189 + 369m — 96m” ~ 92m’ + 32m*

by=—189—171m+450m>— 144m’ (15)
by=—27—405m+ 216m>
bs=27—108m

Thus far, m and « are arbitrary. We can, however, estimate a range of values
for each, based on our present-day knowledge. A value often used for the
deceleration parameter is (Stephani, 1985)

g=1+1 (16)
which, with (4), gives a range for m of
1<m<3 an

(We note that, to recover the results of Bertolami (1986) for =0 and ¢ =
1/3, we would set m=1.) In addition, cosmological matter obeying relation
(1) has values of a (Stephani, 1985) which are restricted to the range

0<ax<l1/3 (18)

There also exist restrictions on the Brans-Dicke constant w. If we
require that the theory recover Einstein’s result for the gravitational bending
of light, then, as is well known,

442w
342w

>0 (19)
If, in addition, the theory is required to give Einstein’s result for the peri-
helion precession of Mercury, the stronger restriction

w>6 (20)

applies (Lord, 1979). When used with equations (11)-(13), this restriction
leads to the condition

(a;—6b)a’'>0 (21)

irge
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which must be satisfied for any choice of m and « if the solution for k=0
is to produce a plausible cosmological model. Such a model is easily con-
structed, once m and ¢ are selected, by using (11) and any two of equations
(8)-(10) to find the remaining constants of the theory.

Turning now to the models with =+ 1, we see that equation (8) loses
its time dependence only if we set

m=1 (22)
Then,
A=—(1+a) (23)
and equations (8)-(10) are solved to give
w=—[0(a)+ Q:xa)]/Qx(a) (24)
where

0i(2)=3Q27a*+39a>+ 16a +4)
0:)(a)=9(1+ a)k/D? (25)
0:(e)=27a’+8la*+45a +7
If we impose condition (20) on w, equations (24) and (25) give
D*>3k(1+ a)/(27a* +123a%+ 74a + 10) (26)

For k=+1, this allows us to estimate a minimum value for D? given a
particular value of a >0. However, for k=— 1, the condition (26) is satisfied
for all a, giving a cosmological model valid for all D>

Finally, we note that equations (9) and (10) give a particularly simple
expression for the coefficient of the cosmological term:

(5+3a) KV_H]
(1+a) 6

so that E<O for all ¢ if k=—1, and also for k=+1 if condition (26) is
satisfied (or, indeed, whenever w >0).

In conclusion, we have found that, within the theoretical framework of
Berman and Som, Bertolami’s equations for a Brans-Dicke cosmology with
time-dependent cosmological term can be solved to give values for the con-
stants of the theory in terms of m and a (for k=0) or just a (for k==+1).
By applying physically reasonable constraints to the values of @ and the
Brans-Dicke constant w, we found that plausible cosmological models may
result from the k =0 solution only if m and « satisfy a particular condition—
from the k=+ 1 solution only if the parameter D is greater than a certain

E=—(1 +3a)2[ 7
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value, and from the k= — 1 solution for all allowed values of & and all values
of D%
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